
A SERVER OF DISTRIBUTED DISK PAGESUSING A CONFIGURABLE SOFTWARE BUSCharles Falkenberg, Paul Hagger and Steve KelleyInstitute for Advanced Computer Studies andThe Department of Computer ScienceUniversity of MarylandCollege Park, MD 20742ABSTRACTAs network latency drops below disk latency, access time to a remote disk will beginto approach local disk access time. The performance of I/O may then be improvedby spreading disk pages across several remote disk servers and accessing disk pagesin parallel. To research this we have prototyped a data page server called a PageFile. This persistent data type provides a set of methods to access disk pages storedon a cluster of remote machines acting as disk servers. The goal is to improve thethroughput of database management system or other I/O intensive application byaccessing pages from remote disks and incurring disk latency in parallel. This reportdescribes the conceptual foundation and the methods of access for our prototype.With oversight by O�ce of Naval Research, this research is supported by ARPA/SISTO inconjunction with the Domain Speci�c Software Architectures project.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
15 OCT 1998 2. REPORT TYPE

3. DATES COVERED
 00-00-1998 to 00-00-1998

4. TITLE AND SUBTITLE
A Server of Distributed Disk Pages Using a Configurable Software Bus

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland, College Park,Department of Computer
Science,Institute for Advanced Computer Studies,College Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
As network latency drops below disk latency, access time to a remote disk will begin to approach local disk
access time. The performance of I/O may then be improved by spreading disk pages across several remote
disk servers and accessing disk pages in parallel. To research this we have prototyped a data page server
called a Page File. This persistent data type provides a set of methods to access disk pages stored on a
cluster of remote machines acting as disk servers. The goal is to improve the throughput of database
management system or other I/O intensive application by accessing pages from remote disks and incurring
disk latency in parallel. This report describes the conceptual foundation and the methods of access for our
prototype.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Contents1 INTRODUCTION 12 MOTIVATION AND REQUIREMENTS 22.1 A Tower of Pizzas : 22.2 Page File Implementation : 32.3 Research Potential : 53 PAGE FILE EXTERNAL INTERFACE 53.1 Error processing : 63.2 Type level methods : 63.2.1 Start Page File processing : 63.2.2 Terminate Page File type : 73.3 Page File level methods : 73.3.1 Open Page File : 73.3.2 Close Page File : 83.3.3 Drop Page File : 93.3.4 Lock Page File : 93.3.5 Access Page File : 93.3.6 Status of Page File : 103.4 Page level methods : 103.4.1 Request Page Read : 113.4.2 Con�rm Read Request : 113.4.3 Cancel Read Request : 123.4.4 Request Page Write : 123.4.5 Con�rm Write : 12

1 INTRODUCTIONWith the goal of achieving parallel I/O on a large data space we have created a persistent datatype called a Page File. The methods are designed to be used by data intensive applicationssuch as a database management system to read and write disk pages. The page size can vary foreach Page File and pages can be stored on a local disk or spread across the disks of a cluster ofremote processors. The Page File abstraction allows page reads and writes to go on without anyknowledge of the number of remote disks or the remote allocation of pages. Our prototype exploitsthe parallelism available when pages are accessed on multiple remote disks simultaneously. Inaddition, we hope to increase the available disk space and minimize disk contention.Network communication in the prototype is based upon software bus organization using thePolylith software interconnection system [Purt9X]. Software bus organization provides a singlecommunication interface for applications, written in di�erent languages and distributed across anetwork of diverse computers and operating systems. Because of these bene�ts, the prototypewe built on the Polylith system may be easily recon�gured for purposes of experimentation.The access methods have been tailored to meet the needs of the database management systemADMS [Rous9X]. ADMS utilizes incremental access methods and caching to improve the per-formance of large distributed databases. The access methods of our prototype are designed toful�ll the I/O requirements of ADMS. Existing I/O access methods can easily be replaced by themethods of our prototype. A sample ADMS work load has been generated and is being used totest the performance of our persistent Page File objects.
Page File ServerADMS orApplicationSoftware ss� - 6? ��9� �:��9� �:��9� �:��9� �:� - Page File ServerLocal Machine Page File ServerPage File ServerLocal Page ServerPage File Client Remote MachinesBusPolylithPFEI

Figure 1: Overview of the components of the Page File data type.Figure 1 shows the logical components of the prototype. An application can use the prototypeby linking to the functions which make up the Page File External Interface (PFEI). Collectivelythese access methods make up the Page File client. For remote Page Files the client requestsservices from the Polylith bus which passes messages over a network to the Page File serverslocated on separate machines. Data and con�rmations are passed back through Polylith tothe Page File client and then returned to the requesting application. For local Page Files, page1

requests are ful�lled with a simple calls to local page server. When a Page File is opened thepage size and the local or remote allocation must be supplied. All subsequent access is madewith individual page numbers without referencing the size of the pages or the type of allocation.A remote Page File is spread across the remote disks using an allocation strategy. We havecurrently implemented a round robin strategy in which each successive page will be stored onthe next server in order. Other potential strategies include an adaptive strategy in which pagesare shuttled between servers to minimize disk contention. If a Page File is locally allocated thepages are stored sequentially on the local disk. In any of these cases, pages are returned to theapplication through a single high level interface which is designed to utilize the potential forparallel I/O of remote pages.This paper describes the conceptual foundation of the Page File type and the access methodswhich de�ne it. Section 2 is a de�nition of the requirements which motivated the creation ofthe prototype. This includes the future research interest in this prototype. Section 3 contains adetailed description of the access methods which make up the Page File External Interface. Thisis intended to be a manual for developers interested in utilizing objects of this type.2 MOTIVATION AND REQUIREMENTSThis section provides some background into the design and implementation of the prototype. Theconceptual design called a The Tower of Pizzas is presented �rst. This is followed by a discussionof how the design has been implemented in order to achieve parallelism and scalability. Finally,the current status and future potential of the project is presented.2.1 A Tower of PizzasEach remote server is an independent machine which contains all of the components found in thepizza box of one workstation: cpu, disk and operating system. This makes the remote clustera Tower of Pizzas on which data can be stored and retrieved in parallel [Rous92]. Results fromexperiments using ADMS indicate that local disk latency is 2-3 times greater then the networklatency. Therefore, if the disk latency for several di�erent pages can be incurred remotely, inparallel, and the pages delivered to the client over the network, the average time required to accesseach page will be closer to the network latency. If all remote servers read pages simultaneouslythen the client can receive those pages from the network faster than if each page had been readindependently from the local disk. In a database management system which where I/O is thebottle neck a signi�cant improvement in throughput may be possible.This improvement in access time may be assumes that several pages are to be read from the diskon the remote server instead of from the local disk. An additional gain will be achieved if thepages can be cached in the memory of the remote server. Each server is dedicated and so the2

cluster provides a large memory space used exclusively for disk caching. The access to a singlepage in a remote memory has the potential to be quicker the access to a page on the local disk.Two levels of parallelism can be achieved with this design. First, disk pages can be requested bya single client from several servers simultaneously in order to incur disk latency in parallel. Asecond level of parallelism will be achieved by adding multiple clients to the same remote clusterof servers. When di�erent clients request pages from separate servers the requests may be ful�lledwithout any disk contention. Figure 2 illustrates the con�guration of multiple clients and serversas a fully connected bipartite graph. qq q qq q@@@@H H H H H H H H@@@@H H H H H H H� � � � � � �� � � � � � �@ @ @P P P P P P P P P P ��� ������� � � � �@@@ ClientsServersFigure 2: Bipartite graph of clients and servers.The con�guration in �gure 2 a high potential for scalability of storage and throughput. Whenservers are added the total storage is increased and the �rst level of parallelism is increased.When clients are added more of the servers are kept active and the throughput is increased. Asthis second level of parallelism is increased greater advantage is taken of the page caching at eachserver. This scalability is an important advantage of this design.Finally, using a cluster of disk servers allows the disk load to be balanced across all servers. Sinceeach �le is spread across the servers, each server can be equally loaded. This keeps the impact ofvery large �les to a minimum and provides for the scalability of storage.2.2 Page File ImplementationThe �rst level of parallelism requires a new implementation of I/O. In order to be ful�llingmultiple page requests simultaneously, reads and writes to a Page File must be done in two steps.The �rst step is a non-blocking request, the second a con�rm. Several requests can be made toread or write pages activating the majority of the servers. After the �rst request is con�rmedsubsequent con�rm operations may be completed incurring only the network overhead.As an example several reads can be requested and if possible processing can continue. Eachrequest is then con�rmed and if the page is available it can be used. This presents some newproblems but it is useful if several pages are needed before the application can continue or if asystem is prefetching pages based on prior paging behavior. This prefetching can be achieved ina database management system where paging behavior is somewhat predictable. In addition, ifsome processing is to be performed on each page, it can be done to the �rst page that arrives fora single request allowing time for the other pages to arrive.3

The servers may also perform some housekeeping in parallel while not �lling client requests.Potential activities include ushing pages to disk and prefetching pages into the servers diskcache. These activities can be done by the each server after the write or read request has beenful�lled.In order to achieve the second level of parallelism the number of both clients and servers will bevaried leading to a great many possible con�gurations. The Polylith software bus will allow usto experiment with these di�erent con�gurations with little or no modi�cation of the applicationprograms. In addition, Polylith allows us to use a variety of architectures to implement thenetwork of distributed systems without any modi�cation.The prototype is modular by design to provide a solid foundation for a wide range of modi�cationswhich will suggest themselves during testing and recon�guration. As part of this modularizationtwo internal interfaces have been de�ned. The Page File Remote Interface (PFRI) is made upof functions calls for processing of remote Page Files. These are the functions which make useof Polylith to implement communication. The Page File Local Interface (PFLI) is a set offunction calls to access the local disk. The local interface is used by the client if the Page islocally allocated or by the each remote server if the Page File is remotely allocated. Figure 3shows the individual software modules and the important internal interfaces.
Page File ServerUNIX File SystemPage File Server Polylith ClientPolylith BusPolylith ServerPage File ClientUNIX File System 6?6?

6?6? PFLIPFRIPFLI PFEI
Figure 3: Software modules and interfaces.This modularity allows us to isolate the components which are only used during remote processing.This is necessary in order to establish a benchmark of local vs. remote Page File processing. Inaddition, the Page File Remote Interface provides a high level view of the remote access throughthe Polylith bus. 4

2.3 Research PotentialThis persistent data type will be used to research several aspects of distributed �le processing.Various strategies for allocating and bu�ering pages at the server as well as at the client will belooked at and optimized for di�erent con�gurations of clients and servers. The communicationnetwork will be optimized and di�erent prefetching strategies will be tried in order to utilizethe two stage read and write. The development supporting this research will be done in severalphases.The �rst phase of implementation distributes pages from a single client to multiple servers in around robin fashion. This is the foundation of the prototype which will be modi�ed to support theother research goals. This phase includes varying the number of servers and the bu�ering doneat the client. In addition a work load processor has been built which executes a work load froman ADMS session. The Polylith con�guration and client bu�ering will be optimized and thea benchmark of local vs. remote allocation will be established. This phase has been completedand the preliminary results indicate that for some work loads the remote allocation of pages hashigher throughput than the allocation on local disk.Subsequent phases will incorporate page bu�ering at the servers, page level locking, and multipleclients running on separate workstations. Bu�ering pages at the server is necessary to insure thatthe request for a remote page can be �lled from memory as frequently as possible. Initially theMRU and LRU replacement policies will be tried but the distribution of pages across all serversmay change the e�ectiveness of these traditional bu�ering strategies. Various page allocationstrategies will also be tried to reduce disk contention at the servers.Page level locking is a critical part of the transaction management in a database managementsystem. Page locking in our prototype needs to be done at the server so that it can be seen bymultiple client machines. Shared memory processes will be used at the server to support multipleclients while keeping lock information in memory.Prototyping multiple clients and multiple servers will exploit a second level of parallelism andallow us to experiment with the scalability of the system. Polylith will provide a platform foreasy recon�guration of the prototype. As more clients are added the bu�ering strategies may needto be adjusted and several con�gurations will be attempted in order to quantify the scalability.3 PAGE FILE EXTERNAL INTERFACEThe methods of access to the Page File can be broken into three groups. The highest levelmethods initialize and terminate the use of the type as a whole. At the middle level, methodsprovide services for a single Page File (eg. open, close). At the lowest level, accessors providepage services which includes reading and writing individual pages.Type level methods are needed for Polylith as well as any other protocol to establish commu-5

nications and allocate storage needed to administer the type. These methods are unique to thetype and are similar to application initialization or housekeeping functions.Page File level methods are similar in many respects to the related UNIX �le system calls. Mostdo not return control to the application until the requested function completes successfully orterminates unsuccessfully.Page level methods provide a new paradigm for accessing data. Data is retrieved one page ata time and the basic operations are not atomic. Pages are retrieved by �rst requesting a pagenumber and then subsequently checking if the page has been returned. Pages are written byrequesting a write and later checking to see if the write has been con�rmed. This providesfor a degree of parallelism during page reads and writes. Several disks can be in operationsimultaneously as a result of several page read or write requests. These two operations are validfor locally allocated Page Files as well but no parallelism is gained.The next sections describe the methods at each of the three levels. The function prototype anda brief description is given along with the error conditions and special parameters. The errorconditions and the special values for any parameters are de�ned in pfExternal.h.3.1 Error processingCalls to the Page File functions can result in two types of errors. The �rst type are commonUNIX �le system errors. These include \�le not found" or \invalid authorization". The secondtype are errors within the Page File system including \invalid allocation type" or \invalid �ledescriptor".If an error is found all functions will return a negative value which matches matches PF ERROR andthe speci�c error number is in the variable pfError. This variable is de�ned in pfExternal.hand will contain both type of errors. UNIX system errors are positive and match the valuesspeci�ed for the particular UNIX system. The Page File errors are negative and match valuesde�ned for errors pfExternal.h.3.2 Type level methodsIn order to create Page File objects the type must be initialized. Initialization is required toactivate the remote servers and set up communications. The remote servers must also be explicitlyshut down and all open processing brought to a close which is done with the terminate typefunction.3.2.1 Start Page File processing(int RtnVal) pfStart(int* argc, char*** argv, int NbrFil, int NbrRqs)6

This function initializes the data type by building the necessary run time structures and initiatingcommunication. The argument count and the argument vector (argc and argv) passed into theapplication program are used and modi�ed in this function. NbrFil is the maximum number ofopen Page Files at any one time and NbrRqs is the maximum number of unful�lled read or writerequests at any one time.Pointers to argc and argv are used to extract any parameters needed by Polylith and then theparameter count and vector are modi�ed to reect the the parameters passed to the applicationonly. If the application is started by Polylith this function must be called before any parametersare extracted from argv.If start up is done successfully a positive value is return which matches PF SUCCESS. If an erroroccurs a negative value is returned from which matches PF ERROR and the error code can be foundin pfError. The possible Page File errors are as follows:PF LISTERR Error during creation of internal lists.PF LOCALERR Error in local startup.PF REMOTEERR Error in the remote startup.3.2.2 Terminate Page File type(int RtnVal) pfTerminate()This function closes all open Page Files and terminates communication with the remote servers.After it is called no new Page Files can be opened. Storage used for internal structures is freedand all remote servers are terminated. This function must be called before the program completesif the initialize function was called. No errors are returned by this function.3.3 Page File level methodsThe �le level methods provide operations to open, close, and lock page �les. Since most of thesemethods are blocking control is not returned to the requesting application until the Page Filerequest succeeds or fails. If the Page File is stored remotely these functions contact all servers.If the Page File is stored locally these functions will call functions from the C library to performthe requested operation. These functions are generalizations of the same UNIX system calls.3.3.1 Open Page File(int PagFilId) pfOpen(char* filename, int flags, int mode, int AlcTyp, int PagSiz)Opens a Page File and returns a Page File id (positive int). The filename is a string and canbe quali�ed with sub directories below the base directory. PagSiz is the size of the data pagewhich must match the page size given on the call to pfOpen when the Page File was created. Theallocation type (AlcTyp) designates how the pages are allocated. Possible values are:7

PF LOCAL Page File is allocated to the local disk.PF RROBIN Pages are allocated to remote disks by round robin.PF ADAPTIVE Pages are allocated adaptively, currently set to PF LOCAL.The flags and mode parameters are used in the same way as the UNIX system call open().The flags parameter designate how the �le is opened and if the �le is to be created. The modeparameter is only evaluated if the �le is created and designates the authorities of the new �le.The possible values for flags are:PF RDONLY Page File opened for read access.PF WRONLY Page File opened with write access.PF RDWR Page File opened with read and write access.PF CREAT Page File is created.If this function successfully opens the Page File it returns a positive int which is a uniqueidenti�er for this open Page File. The same page �le can be opened multiple times and a new�le identi�er will be returned. If an error occurs during the open a negative value is returned inPagFilId which matches PF ERROR and the error code can be found in pfError. The possiblePage File errors are as follows:PF MAXOPEN Maximum number of Page File already open.PF BADALCTYPE Invalid AlcTyp passed to open.PF MAXREQUEST The Page File system is out of request ids.If a UNIX error occurs a negative value is returned, which matches PF ERROR. The error code canbe found in pfError. Some of the possible UNIX �le errors are as follows:[EACCES] Error in �le or directory permissions.[EDQUOT] Disk quota error.[ENOENT] File does not exist and PF CREAT not speci�ed.3.3.2 Close Page File(int RtnVal) pfClose(int PagFilId, int WaitFlg)Closes a Page File and cancels any outstanding read requests. The PagFilId must be the idof �le opened with the pfOpen function. This close operation reduces the number open �lesand allows the �le identi�er to be reused. This function can wait for con�rmation or not. IfWaitFlg is set to PF WAIT then control will not be returned until the close has been con�rmedby all servers. If WaitFlg is set to PF NOWAIT then control is returned immediately and the closeproceeds without con�rmation. If this call completes successfully a positive value is returnedwhich matches PF SUCCESS. If an error occurs a negative value is returned, which matches one ofthe following errors:PF BADFILE An invalid Page File id was passed on the call.PF MAXREQUEST The Page File system is out of request ids.PF RQSCNL Uncon�rmed requests were canceled.If a bad �le id is given no �le is closed. If open requests exist for the �le all requests are canceled,the �le close proceeds and PF RQSCNL is returned. If blocking is requested, each server responds8

before the function returns.3.3.3 Drop Page File(int RtnVal) pfDrop(char* filename, int AlcTyp)Drops (unlinks) any Page File. This removes a Page File from all servers on which it is stored. Theallocation type (AlcTyp) designates how the pages in the Page File to be deleted are allocated.Possible values are:PF LOCAL Page File is allocated to the local disk.PF RROBIN Pages are allocated to remote disks by round robin.PF ADAPTIVE Pages are allocated adaptively.If the Page File is successfully dropped a positive value is returned which matches PF SUCCESS.If an error occurs a negative value is returned from which matches PF ERROR and PF pfErrormatches one of the following:PF MAXREQUEST The Page File system is out of request ids.[ENOTDIR] Path contains invalid directory.[ENOENT] Invalid �le name.[EACCES] Error in �le or directory permissions.3.3.4 Lock Page File(int RtnVal) pfLock(int PagFilId, int LckTyp)Places a UNIX lock on an open Page File. The PagFilId must be the result of and pfOpenoperation. If this page is �le is allocated to remote disks each remote �le is locked. All locksare non-blocking and if the lock cannot be achieved an error is returned. The type of lock isdesignated by LckTyp and the possible values are:PF SHARE Shared �le lock.PF EXCL Exclusive �le lock.PF UNLOCK Release lockIf the Page File is successfully locked a positive value is returned which matches PF SUCCESS. Ifan error occurs a negative value is returned which matches PF ERROR and one of the followingerror conditions:PF BADFILE An invalid Page File id was passed on the call.PF MAXREQUEST The Page File system is out of request ids.If the lock cannot be made without blocking a negative value is returned from which matchesPF ERROR and the error code in pfError is as follows:[EWOULDBLOCK] The lock cannot be achieved without blocking.3.3.5 Access Page File 9

(int RtnVal) pfAccess(char* filename, int AlcTyp, int AccTyp)This function returns the accessibility of a Page File. This is used to check for the existence ofa �le or to see if the �le can be read, written to or exclusively locked. It can be used before alock is requested to indicate if access to the Page Files is possible. The Page File name can bequali�ed with subdirectories below the base directory. The allocation type (AlcTyp) designateshow the pages of the �le are allocated. Possible values are:PF LOCAL Page File is allocated to the local disk.PF RROBIN Pages are allocated to remote disks by round robin.PF ADAPTIVE Pages are allocated adaptively.The type of access needed can be speci�ed in AccTyp and the possibilities are:PF READ The Page File can be opened for reading.PF WRITE The Page File can be opened for writing.PF LOCKEX An exclusive lock can be made.PF EXIST Does the named �le exist.If the Page File can be successfully accessed in the speci�ed way, a positive value is returnedwhich matches PF SUCCESS. If access is not possible a negative value is returned which matchesPF ERROR and one of the following error conditions:PF BADALCTYPE An invalid AlcTyp was passed on the call.PF MAXREQUEST The Page File system is out of request ids.If a UNIX error occurs a negative value is returned from which matches PF ERROR and the errorcode in pfError is positive and could be one of the following follows:[EACCES] Permission bits do not allow access to some part of Path.[ENOTDIR] Path contains invalid directory.[ENOENT] Invalid �le name.3.3.6 Status of Page File(int RtnVal) pfStatus(PagFilId)This function returns a pointer to a structure which contains the status of an open Page File.This information includes the number of uncon�rmed reads and writes.3.4 Page level methodsThe page level methods provide a logical departure from the existing �le access functions in threeways. First, reading and writing data is done one page at a time. Second, reads and writes arenot atomic, they are split into a request and a con�rmation. Finally, the read and write requestcalls do not block and the con�rm blocks only if Polylith is run with the direct connect option.In order to retrieve a data page, memory must be allocated for the page and a request for thatpage made. When the page is needed the pfConfirmRead function is called and the status of the10

page retrieval is returned. The page has either been written to the memory location providedor the request is still being serviced. This separation allows multiple pages to be requested andretrieved in parallel while the application is processing those pages which have been returned.Writing a page is similar. The write is requested and is non-blocking. Processing can con-tinue until the con�rmation of the page actually being written is required. At this time thepfConfirmWrite can be called until it returns a successful result.These routines are valid for local or remotely allocated Page Files. If the pages are allocatedlocally only one call will be needed to the con�rm functions. This will always return successfullyand the page will be written to or read from disk.3.4.1 Request Page Read(int RqsId) pfRequestRead(int PagFilId, int PageId, void* BuffPtr)Initiate page retrieval. The page is identi�ed with a number PageId which must be an existingpage which must be less or equal to the last page in the �le and greater than 0. The Page Fileid PagFilId must be a valid open Page File. The memory which into which the page will bewritten is pointed to by BuffPtr. Memory must be available to accommodate an entire page ofdata for the Page File identi�ed by PagFilId. If the request is successful a positive request id isreturned. This is used to check the status of the read request or to cancel the read request. Ifan error occurs a negative value is returned matching PF ERROR and one of the following negativeerror codes can be found in pfError.PF MAXREQUEST The maximum number of requests have been made.PF BADFILE The Page File id is invalid.PF BADPAGE The page number is invalid.PF BUFFERERR Error occurred during remote bu�er allocation.3.4.2 Con�rm Read Request(int RtnVal) pfConfirmRead(int RqsId)Return the status of a page request. RqsId must be a open read request. If the page has beencopied into the memory location this function returns a positive value equal to PF SUCCESS, readrequest is complete and the request id will be reused. If the page has not yet been receiveda positive value matching PF WAITING will be returned. If an error occurs a negative value isreturned matching PF ERROR will be returned and the value of pfError will match one of thefollowing:PF BADREQUEST The request id in invalid.PF RQSCANCEL The read request has been canceled.PF NOTREADRQS The request id is not a read request.11

3.4.3 Cancel Read Request(int RtnVal) pfCancelRead(int RqsId)Cancel a request to read a page. If several pages were requested and they are no longer neededthis function will free the request and allow the memory allocated for the page to be reused.If the request is successfully canceled a positive value equal to PF SUCCESS is returned and therequest id may be reused. If an error occurs a negative value is returned matching PF ERROR isreturned and pfError will match one of the following:PF BADREQUEST The request id in invalid.PF RQSCANCEL The read request has been canceled.PF NOTREADRQS The request id is not a read request.3.4.4 Request Page Write(int RqsId) pfRequestWrite(int PagFilId, int PageId, void* BuffPtr)Request a page be written to disk. The data to be written is located in the memory locationpointed to by BuffPtr and extends for a length of the page. The page id PageId must be greateror equal to 1 and less than or equal to the last page plus 1. This page write request cannot becanceled. If this function completes successfully a positive request id is returned which can beused to check on the status of the write request. If an error occurs a negative value is returnedmatching PF ERROR and one of the following negative error code can be found in pfError.PF MAXREQUEST The maximum number of requests have been made.PF BADFILE The Page File id is invalid.PF BADPAGE The page number is invalid.PF BUFFERERR Error occurred during remote bu�er allocation.3.4.5 Con�rm Write(int RtnVal) pfConfirmWrite(int RqsId)Return the status of a page write request. RqsId must be a open write request. If the pagehas been written this function returns a positive value equal to PF SUCCESS, the write request iscomplete and the request id will be reused. If the page has not yet been written a positive valuematching PF WAITING will be returned. If an error occurs a negative value is returned matchingPF ERROR will be returned and the value of pfError will match one of the following:PF BADREQUEST The request id in invalid.PF RQSCANCEL The read request has been canceled.PF NOTWRITERQS The request id is not a write request.It is possible for a time out error to occur after the page has been successfully written by theserver but before the con�rmation is sent to the Page File client and therefore returned to theapplication. Therefore the application should not assume that page has or has not been writtenif a time out occurs. 12

BIBLIOGRAPHY[PuJa91] An environment for developing fault tolerant software. J. Purtilo and P. Jalote. IEEETransactions on Software Engineering, vol. 17, (1991), pp. 153-159.[Purt9X] The Polylith Software Bus. J. Purtilo. To appear, ACMTransactions on Program-ming Languages and Systems.[Rous9X] ADMS: A Testbed for Incremental Access Methods, N. Roussopoulos, N. Economou,and A. Stamenas, To appear, IEEE Trans. on Knowledge and Data Engineering.[Rous92] The Tower of Pizzas, N. Roussopoulos, Internal Memo.

13

SUMMARY OF METHODS� Start Page File processing(int RtnVal) pfStart(int* argc, char*** argv, int NbrFil, int NbrRqs)� Terminate Page File type(int RtnVal) pfTerminate()� Open Page File(int PagFilId) pfOpen(char* filename, int flags, int mode, int AlcTyp, int PagSiz)� Close Page File(int RtnVal) pfClose(int PagFilId, int WaitFlg)� Drop Page File(int RtnVal) pfDrop(char* filename, int AlcTyp)� Lock Page File(int RtnVal) pfLock(int PagFilId, int LckTyp)� Access Page File(int RtnVal) pfAccess(char* filename, int AlcTyp, int AccTyp)� Status of Page File(int RtnVal) pfStatus(PagFilId)� Request Page Read(int RqsId) pfRequestRead(int PagFilId, int PageId, void* BuffPtr)� Con�rm Read Request(int RtnVal) pfConfirmRead(int RqsId)� Cancel Read Request(int RtnVal) pfCancelRead(int RqsId)� Request Page Write(int RqsId) pfRequestWrite(int PagFilId, int PageId, void* BuffPtr)� Con�rm Write(int RtnVal) pfConfirmWrite(int RqsId)14

